Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(3): 812-830, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541032

RESUMO

Elevated CO2 (eCO2 ) reduces the impact of drought, but the mechanisms underlying this effect remain unclear. Therefore, we used a multidisciplinary approach to investigate the interaction of drought and eCO2 in Arabidopsis thaliana leaves. Transcriptome and subsequent metabolite analyses identified a strong induction of the aliphatic glucosinolate (GL) biosynthesis as a main effect of eCO2 in drought-stressed leaves. Transcriptome results highlighted the upregulation of ABI5 and downregulation of WRKY63 transcription factors (TF), known to enhance and inhibit the expression of genes regulating aliphatic GL biosynthesis (e.g., MYB28 and 29 TFs), respectively. In addition, eCO2 positively regulated aliphatic GL biosynthesis by MYB28/29 and increasing the accumulation of GL precursors. To test the role of GLs in the stress-mitigating effect of eCO2 , we investigated the effect of genetic perturbations of the GL biosynthesis. Overexpression of MYB28, 29 and 76 improved drought tolerance by inducing stomatal closure and maintaining plant turgor, whereas loss of cyp79f genes reduced the stress-mitigating effect of eCO2 and decreased drought tolerance. Overall, the crucial role of GL metabolism in drought stress mitigation by eCO2 could be a beneficial trait to overcome future climate challenges.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Dióxido de Carbono/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Plant Cell Physiol ; 61(6): 1191-1203, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333782

RESUMO

Growth of etiolated Arabidopsis hypocotyls is biphasic. During the first phase, cells elongate slowly and synchronously. At 48 h after imbibition, cells at the hypocotyl base accelerate their growth. Subsequently, this rapid elongation propagates through the hypocotyl from base to top. It is largely unclear what regulates the switch from slow to fast elongation. Reverse genetics-based screening for hypocotyl phenotypes identified three independent mutant lines of At1g70990, a short extensin (EXT) family protein that we named EXT33, with shorter etiolated hypocotyls during the slow elongation phase. However, at 72 h after imbibition, these dark-grown mutant hypocotyls start to elongate faster than the wild type (WT). As a result, fully mature 8-day-old dark-grown hypocotyls were significantly longer than WTs. Mutant roots showed no growth phenotype. In line with these results, analysis of native promoter-driven transcriptional fusion lines revealed that, in dark-grown hypocotyls, expression occurred in the epidermis and cortex and that it was strongest in the growing part. Confocal and spinning disk microscopy on C-terminal protein-GFP fusion lines localized the EXT33-protein to the ER and cell wall. Fourier-transform infrared microspectroscopy identified subtle changes in cell wall composition between WT and the mutant, reflecting altered cell wall biomechanics measured by constant load extensometry. Our results indicate that the EXT33 short EXT family protein is required during the first phase of dark-grown hypocotyl elongation and that it regulates the moment and extent of the growth acceleration by modulating cell wall extensibility.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Cotilédone/metabolismo , Estiolamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Hipocótilo/metabolismo , Proteínas de Membrana/genética , Filogenia , Raízes de Plantas/metabolismo , Alinhamento de Sequência , Espectroscopia de Infravermelho com Transformada de Fourier
4.
New Phytol ; 226(6): 1766-1780, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32077108

RESUMO

We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::ß-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Pressão Osmótica , Reguladores de Crescimento de Plantas , Folhas de Planta/metabolismo
5.
Trends Biotechnol ; 37(12): 1269-1272, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31345571

RESUMO

Microbiome research and innovation (R&I) promises solutions to a broad range of business and societal challenges. To bridge the gap between today's potential and the moment at which concrete applications start generating societal impact, critical-scale efforts offering visible progress on topics of public interest will be essential.


Assuntos
Pesquisa Biomédica , Microbiota , Disciplinas das Ciências Biológicas , Humanos
6.
New Phytol ; 221(3): 1345-1358, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267580

RESUMO

Although cell number generally correlates with organ size, the role of cell cycle control in growth regulation is still largely unsolved. We studied kip related protein (krp) 4, 6 and 7 single, double and triple mutants of Arabidopsis thaliana to understand the role of cell cycle inhibitory proteins in leaf development. We performed leaf growth and seed size analysis, kinematic analysis, flow cytometery, transcriptome analysis and mathematical modeling of G1/S and G2/M checkpoint progression of the mitotic and endoreplication cycle. Double and triple mutants progressively increased mature leaf size, because of elevated expression of cell cycle and DNA replication genes stimulating progression through the division and endoreplication cycle. However, cell number was also already increased before leaf emergence, as a result of an increased cell number in the embryo. We show that increased embryo and seed size in krp4/6/7 results from seed abortion, presumably reducing resource competition, and that seed size differences contribute to the phenotype of several large-leaf mutants. Our results provide a new mechanistic understanding of the role of cell cycle regulation in leaf development and highlight the contribution of the embryo to the development of leaves after germination in general.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/anatomia & histologia , Arabidopsis/citologia , Arabidopsis/embriologia , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos , Contagem de Células , Ciclo Celular/genética , Divisão Celular , DNA de Plantas/biossíntese , Regulação para Baixo/genética , Endorreduplicação , Perfilação da Expressão Gênica , Cinética , Mutação/genética , Tamanho do Órgão , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Ploidias , Sementes/anatomia & histologia , Sementes/fisiologia , Regulação para Cima/genética
7.
Front Plant Sci ; 8: 1308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824662

RESUMO

Under normal and stress conditions plant growth require a complex interplay between phytohormones and reactive oxygen species (ROS). However, details of the nature of this crosstalk remain elusive. Here, we demonstrate that PINOID (PID), a serine threonine kinase of the AGC kinase family, perturbs auxin homeostasis, which in turn modulates rosette growth and induces stress responses in Arabidopsis plants. Arabidopsis mutants and transgenic plants with altered PID expression were used to study the effect on auxin levels and stress-related responses. In the leaves of plants with ectopic PID expression an accumulation of auxin, oxidative burst and disruption of hormonal balance was apparent. Furthermore, PID overexpression led to the accumulation of antioxidant metabolites, while pid knockout mutants showed only moderate changes in stress-related metabolites. These physiological changes in the plants overexpressing PID modulated their response toward external drought and osmotic stress treatments when compared to the wild type. Based on the morphological, transcriptome, and metabolite results, we propose that perturbations in the auxin hormone levels caused by PID overexpression, along with other hormones and ROS downstream, cause antioxidant accumulation and modify growth and stress responses in Arabidopsis. Our data provide further proof for a strong correlation between auxin and stress biology.

8.
Front Plant Sci ; 8: 1009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659952

RESUMO

In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE ) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE -related changes in auxin levels lead to transcriptional reprogramming of cellular processes.

9.
Plant Physiol ; 174(2): 1110-1126, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28400494

RESUMO

Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family.


Assuntos
Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Raios Ultravioleta , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos da radiação , Fenômenos Biomecânicos , Divisão Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , MicroRNAs/genética , MicroRNAs/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Transcriptoma/genética , Zea mays/genética
10.
Brain Behav Immun ; 64: 103-115, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28390980

RESUMO

Stroke represents one of the first causes of mortality and morbidity worldwide. We evaluated the therapeutic potential of a novel semi-synthetic spirosteroid sapogenin derivative "S15" in a transient middle cerebral artery occlusion (tMCAO) focal ischemia model in rat. S15-treated rats had significantly reduced infarct volumes and improved neurological functions at 24h post-reperfusion, compared with ischemia. Corresponding gene expression changes in brain were characterized by mRNA sequencing and qPCR approaches. Next, we applied geneset, pathway and transcription factor motif enrichment analysis to identify relevant signaling networks responsible for neuronal damage upon ischemia-reperfusion or neuroprotection upon pretreatment with S15. As expected, ischemia-reperfusion brain damage strongly modulates transcriptional programs associated with immune responses, increased differentiation of immune cells as well as reduced (cat)ion transport and synaptic activity. Interestingly, S15-dependent neuroprotection regulates inflammation-associated genes involved in phagosome specific resolution of tissue damage, chemotaxis and anti-inflammatory alternative activation of microglia. Altogether our transcriptome wide RNA sequencing and integrated pathway analysis provides new clues in the neuroprotective properties of a novel spirosteroid S15 or neuronal damage in rat brains subjected to ischemia, which opens new perspectives for successful treatment of stroke.


Assuntos
Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Sapogeninas/administração & dosagem , Acidente Vascular Cerebral/metabolismo , Transcriptoma , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Ratos Wistar , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico
11.
Mamm Genome ; 27(3-4): 135-43, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26886941

RESUMO

A number of American mink phenotypes display a range of brownish colours. One of these phenotypes, namely American Palomino (b (P) b (P) ) (AP) has been found to be associated with the tyrosinase-related protein 1 (TYRP1) gene by genotyping microsatellite markers in one sire family. Trials for amplifying the genomic DNA and cDNA at the beginning of intron 2 of AP TYRP1 revealed the presence of a large insertion of approximately eight kb. The insertion most likely disrupts different elements necessary for the splicing of intron 2 of the TYRP1 gene. In AP RNAseq data indicate, however, the presence of the wild-type (wt) transcript at very low levels and Western blot reveals three products when using an antibody raised against middle part of the TYRP1 protein. One individual from another brown mink phenotype-commercially named Dawn-was also investigated at the molecular level by long-range PCR and the same size insertion appears to be present. By this we suggest that certain modifiers of TYRP1 would induce different brown colour degradation, which results in at least two different phases of brown.


Assuntos
Íntrons , Vison/genética , Mutagênese Insercional , Oxirredutases/genética , Fenótipo , Animais , Éxons , Loci Gênicos , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Oxirredutases/metabolismo
12.
BMC Genomics ; 16 Suppl 13: S6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26694224

RESUMO

BACKGROUND: Recently fibroblasts of many mammalian species have been reprogrammed to pluripotent state using overexpression of several transcription factors. This technology allows production of induced pluripotent stem (iPS) cells with properties similar to embryonic stem (ES) cells. The completeness of reprogramming process is well studied in such species as mouse and human but there is not enough data on other species. We produced American mink (Neovison vison) ES and iPS cells and compared these cells using transcriptome analysis. RESULTS: We report the generation of 10 mink ES and 22 iPS cell lines. The majority of the analyzed cell lines had normal diploid chromosome number. The only ES cell line with XX chromosome set had both X-chromosomes in active state that is characteristic of pluripotent cells. The pluripotency of ES and iPS cell lines was confirmed by formation of teratomas with cell types representing all three germ layers. Transcriptome analysis of mink embryonic fibroblasts (EF), two ES and two iPS cell lines allowed us to identify 11831 assembled contigs which were annotated. These led to a number of 6891 unique genes. Of these 3201 were differentially expressed between mink EF and ES cells. We analyzed expression levels of these genes in iPS cell lines. This allowed us to show that 80% of genes were correctly reprogrammed in iPS cells, whereas approximately 6% had an intermediate expression pattern, about 7% were not reprogrammed and about 5% had a "novel" expression pattern. We observed expression of pluripotency marker genes such as Oct4, Sox2 and Rex1 in ES and iPS cell lines with notable exception of Nanog. CONCLUSIONS: We had produced and characterized American mink ES and iPS cells. These cells were pluripotent by a number of criteria and iPS cells exhibited effective reprogramming. Interestingly, we had showed lack of Nanog expression and consider it as a species-specific feature.


Assuntos
Células-Tronco Embrionárias/metabolismo , Vison/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcriptoma , Animais , Reprogramação Celular , Análise Citogenética , Inativação Gênica , Teratoma/metabolismo
13.
Ann Bot ; 115(1): 67-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25492062

RESUMO

BACKGROUND AND AIMS: Plant stature and shape are largely determined by cell elongation, a process that is strongly controlled at the level of the cell wall. This is associated with the presence of many cell wall proteins implicated in the elongation process. Several proteins and enzyme families have been suggested to be involved in the controlled weakening of the cell wall, and these include xyloglucan endotransglucosylases/hydrolases (XTHs), yieldins, lipid transfer proteins and expansins. Although expansins have been the subject of much research, the role and involvement of expansin-like genes/proteins remain mostly unclear. This study investigates the expression and function of AtEXLA2 (At4g38400), a member of the expansin-like A (EXLA) family in arabidposis, and considers its possible role in cell wall metabolism and growth. METHODS: Transgenic plants of Arabidopsis thaliana were grown, and lines over-expressing AtEXLA2 were identified. Plants were grown in the dark, on media containing growth hormones or precursors, or were gravistimulated. Hypocotyls were studied using transmission electron microscopy and extensiometry. Histochemical GUS (ß-glucuronidase) stainings were performed. KEY RESULTS: AtEXLA2 is one of the three EXLA members in arabidopsis. The protein lacks the typical domain responsible for expansin activity, but contains a presumed cellulose-interacting domain. Using promoter::GUS lines, the expression of AtEXLA2 was seen in germinating seedlings, hypocotyls, lateral root cap cells, columella cells and the central cylinder basally to the elongation zone of the root, and during different stages of lateral root development. Furthermore, promoter activity was detected in petioles, veins of leaves and filaments, and also in the peduncle of the flowers and in a zone just beneath the papillae. Over-expression of AtEXLA2 resulted in an increase of >10 % in the length of dark-grown hypocotyls and in slightly thicker walls in non-rapidly elongating etiolated hypocotyl cells. Biomechanical analysis by creep tests showed that AtEXLA2 over-expression may decrease the wall strength in arabidopsis hypocotyls. CONCLUSIONS: It is concluded that AtEXLA2 may function as a positive regulator of cell elongation in the dark-grown hypocotyl of arabidopsis by possible interference with cellulose metabolism, deposition or its organization.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/ultraestrutura
15.
J Exp Bot ; 65(18): 5485-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25147272

RESUMO

The synthesis and composition of cell walls is dynamically adapted in response to many developmental and environmental signals. In this respect, cell wall proteins involved in controlling cell elongation are critical for cell development. Transcriptome analysis identified a gene in Arabidopsis thaliana, which was named proline-rich protein-like, AtPRPL1, based on sequence similarities from a phylogenetic analysis. The most resemblance was found to AtPRP1 and AtPRP3 from Arabidopsis, which are known to be involved in root hair growth and development. In A. thaliana four proline-rich cell wall protein genes, playing a role in building up the cross-connections between cell wall components, can be distinguished. AtPRPL1 is a small gene that in promoter::GUS (ß-glucuronidase) analysis has high expression in trichoblast cells and in the collet. Chemical or mutational interference with root hair formation inhibited this expression. Altered expression levels in knock-out or overexpression lines interfered with normal root hair growth and etiolated hypocotyl development, but Fourier transform-infrared (FT-IR) analysis did not identify consistent changes in cell wall composition of root hairs and hypocotyl. Co-localization analysis of the AtPRPL1-green fluorescent protein (GFP) fusion protein and different red fluorescent protein (RFP)-labelled markers confirmed the presence of AtPRPL1-GFP in small vesicles moving over the endoplasmic reticulum. Together, these data indicate that the AtPRPL1 protein is involved in the cell's elongation process. How exactly this is achieved remains unclear at present.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Hipocótilo/genética , Hipocótilo/metabolismo , Raízes de Plantas/genética
16.
PLoS One ; 8(11): e82596, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312429

RESUMO

The root of Arabidopsis thaliana is used as a model system to unravel the molecular nature of cell elongation and its arrest. From a micro-array performed on roots that were treated with aminocyclopropane-1-carboxylic acid (ACC), the precursor of ethylene, a Small auxin-up RNA (SAUR)-like gene was found to be up regulated. As it appeared as the 76th gene in the family, it was named SAUR76. Root and leaf growth of overexpression lines ectopically expressing SAUR76 indicated the possible involvement of the gene in the division process. Using promoter::GUS and GFP lines strong expression was seen in endodermal and pericycle cells at the end of the elongation zone and during several stages of lateral root primordia development. ACC and IAA/NAA were able to induce a strong up regulation of the gene and changed the expression towards cortical and even epidermal cells at the beginning of the elongation zone. Confirmation of this up regulation of expression was delivered using qPCR, which also indicated that the expression quickly returned to normal levels when the inducing IAA-stimulus was removed, a behaviour also seen in other SAUR genes. Furthermore, confocal analysis of protein-GFP fusions localized the protein in the nucleus, cytoplasm and plasma membrane. SAUR76 expression was quantified in several mutants in ethylene and auxin-related pathways, which led to the conclusion that the expression of SAUR76 is mainly regulated by the increase in auxin that results from the addition of ACC, rather than by ACC itself.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genes de Plantas , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Primers do DNA , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
17.
Gene ; 527(1): 48-54, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23747352

RESUMO

The mutation causing the Silverblue color type (pp) is one of the most used recessive mutations within American mink (Neovison vison) fur farming, since it is involved in some of the popular color types such as Violet and Saphire which originate from a combination of recessive mutations. In the present study, the genomic and mRNA sequences of the melanophilin (MLPH) gene were studied in Violet, Silverblue and wild-type (wt) mink animals. Although breeding schemes and previous literature indicates that the Violet (aammpp) phenotype is a triple recessive color type involving the same locus as the Silverblue (pp) color type, our findings indicate different genotypes at the MLPH locus. Upon comparison at genomic level, we identified two deletions of the entire intron 7 and of the 5' end of intron 8 in the sequence of the Silverblue MLPH gene. When investigating the mRNA, the Silverblue animals completely lack exon 8, which encodes 65 residues, of which 47 define the Myosin Va (MYO5A) binding domain. This may cause the incorrect anchoring of the MLPH protein to MYO5A in Silverblue animals, resulting in an improper pigmentation as seen in diluted phenotypes. Additionally, in the MLPH mRNA of wt, Violet and Silverblue phenotypes, part of intron 8 is retained resulting in a truncated MLPH protein, which is 359 residues long in wt and Violet and 284 residues long in Silverblue. Subsequently, our findings point out that the missing actin-binding domain, in neither of the 3 analyzed phenotypes affects the transport of melanosomes or the consequent final pigmentation. Moreover, the loss of the major part of the MYO5A domain in the Silverblue MLPH protein seems to be the responsible for the dilute phenotype. Based on our genomic DNA data, genetic tests for selecting Silverblue and Violet carrier animals can be performed in American mink.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cor de Cabelo/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Éxons , Genes Recessivos , Estudos de Associação Genética , Cabelo/fisiologia , Repetições de Microssatélites , Vison/genética , Dados de Sequência Molecular , Linhagem , Fenótipo , Domínios e Motivos de Interação entre Proteínas , RNA Mensageiro/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
18.
BMC Plant Biol ; 12: 208, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23134674

RESUMO

BACKGROUND: Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. RESULTS: Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. CONCLUSIONS: ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are converged to a 'common pathway'. Furthermore, several potential keyplayers, such as transcription factors and auxin-responsive genes, were identified by the microarray analysis. They await further analysis to reveal their exact role in the control of cell elongation.


Assuntos
Aminoácidos Cíclicos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Genes de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
19.
Gene ; 511(1): 66-72, 2012 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22982743

RESUMO

Our previously published second generation genetic map for the American mink (Neovison vison) has been used and redesigned in its best for genome-wide studies with maximum of efficiency. A number of 114 selected markers, including 33 newly developed microsatellite markers from the CHORI-231 mink Bacterial Artificial Chromosome (BAC) library, have been genotyped in a two generation population composed of 1200 individuals. The outcome reassigns the position of some markers on the chromosomes and it produces a more reliable map with a convenient distance between markers. A total of 104 markers mapped to 14 linkage groups corresponding to the mink autosomes. Six markers are unlinked and four markers are allocated to the X chromosome by homology but no linkage was detected. The sex-average linkage map spans 1192 centiMorgans (cM) with an average intermarker distance of 11.4cM and 1648cM when the ends of the linkage groups and the autosomal unlinked markers are added. Sex-specific genetic linkage maps were also generated. The male sex-specific map had a total length of 1014.6cM between the linked markers and an average inter-marker interval of 9.7cM. The female map has a corresponding length of 1378.6cM and an average inter-marker interval of 13.3cM. The study is complemented with additional anchorage for most of the chromosomes of the map by BAC in situ hybridization with clones containing microsatellites strategically selected from the various parts of the genome. This map provides an improved tool for genetic mapping and comparative genomics in mink, also useful for the future assembly of the mink genome sequence when this will be taken forward.


Assuntos
Vison/genética , Animais , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos/genética , Cães , Feminino , Genoma , Humanos , Hibridização in Situ Fluorescente , Masculino , Repetições de Microssatélites , Especificidade da Espécie
20.
Plant Signal Behav ; 5(3): 261-3, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20023426

RESUMO

Determination of the subcellular localization of an unknown protein is a major step towards the elucidation of its function. Lately, the expression of proteins fused to fluorescent markers has been very popular and many approaches have been proposed to express these proteins. Stable transformation using Agrobacterium tumefaciens generates stable lines for downstream experiments, but is time-consuming. If only colocalization is required, transient techniques save time and effort. Several methods for transient assays have been described including protoplast transfection, biolistic bombardment, Agrobacterium tumefaciens cocultivation and infiltration. In general colocalizations are preferentially performed in intact tissues of the same species, resembling the native situation. High transformation rates were described for cotyledons of Arabidopsis, but never for roots. Here we report that it is possible to transform Arabidopsis root epidermal cells with an efficiency that is sufficient for colocalization purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...